The beta-amyloid precursor protein APP is tyrosine-phosphorylated in cells expressing a constitutively active form of the Abl protoncogene.

نویسندگان

  • N Zambrano
  • P Bruni
  • G Minopoli
  • R Mosca
  • D Molino
  • C Russo
  • G Schettini
  • M Sudol
  • T Russo
چکیده

The cytosolic domain of the beta-amyloid precursor protein APP interacts with three PTB (phosphotyrosine binding domain)-containing adaptor proteins, Fe65, X11, and mDab1. Through these adaptors, other molecules can be recruited at the cytodomain of APP; one of them is Mena, that binds to the WW domain (a protein module with two conserved tryptophans) of Fe65. The enabled and disabled genes of Drosophila, homologues of the mammalian Mena and mDab1 genes, respectively, are genetic modulators of the phenotype observed in flies null for the Abl tyrosine kinase gene. The involvement of Mena and mDab1 in the APP-centered protein-protein interaction network suggests the possibility that Abl plays a role in APP biology. We show that Fe65, through its WW domain, binds in vitro and in vivo the active form of Abl. Furthermore, in cells expressing the active form of Abl, APP is tyrosine-phosphorylated. Phosphopeptide analysis and site-directed mutagenesis support the hypothesis that Tyr(682) of APP(695) is the target of this phosphorylation. Co-immunoprecipitation experiments demonstrate that active Abl and tyrosine-phosphorylated APP also form a stable complex, which could result from the interaction of the pYENP motif of the APP cytodomain with the SH2 domain of Abl. These results suggest that Abl, Mena, and mDab1 are involved in a common molecular machinery and that APP can play a role in tyrosine kinase-mediated signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The c-Abl tyrosine kinase phosphorylates the Fe65 adaptor protein to stimulate Fe65/amyloid precursor protein nuclear signaling.

The amyloid precursor protein (APP) is proteolytically processed to release a C-terminal domain that signals to the nucleus to regulate transcription of responsive genes. The APP C terminus binds to a number of phosphotyrosine binding (PTB) domain proteins and one of these, Fe65, stimulates APP nuclear signaling. Fe65 is an adaptor protein that contains a number of protein-protein interaction d...

متن کامل

Investigation of the Iron Oxide Nanoparticle Effects on Amyloid Precursor Protein Processing in Hippocampal Cells

Introduction: Iron oxide nanoparticles (Fe2O3-NPs) are small magnetic particles that widely used in different aspects of biology and medicine in modern life. Fe2O3-NP accumulated in the living cells due to absence of active system to excrete the iron ions so damages cellular organelles by highly reactivity. Method: Herein cytotoxic effects of Fe2O3-NP with 50 nm size were investigated on prima...

متن کامل

Role of P2X7 and P2Y2 receptors on α-secretase-dependent APP processing: Control of amyloid plaques formation “in vivo” by P2X7 receptor

Amyloid precursor protein (APP) is expressed in a large variety of neural and non-neural cells. The balance between non-pathogenic and pathologic forms of APP processing, mediated by α-secretase and β-secretase respectively, remains a crucial step to understand β-amyloid, Aβ42 peptide, formation and aggregation that are at the origin of the senile plaques in the brain, a characteristic hallmark...

متن کامل

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 23  شماره 

صفحات  -

تاریخ انتشار 2001